If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-42x+16=0
a = 6; b = -42; c = +16;
Δ = b2-4ac
Δ = -422-4·6·16
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{345}}{2*6}=\frac{42-2\sqrt{345}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{345}}{2*6}=\frac{42+2\sqrt{345}}{12} $
| (3x+20)(6x+12)=180 | | 10=32-x | | 5x-3(x-3)=-6+4x1 | | 6-1.5(4b+8)=3(-6-2b) | | 16=y/2+4 | | 20-p=25 | | 2x(×6)=5 | | 5+5x3+2=-8 | | 2r(4-r)=15 | | x+23+103=180 | | x-5xx-3=0 | | 16^3x=(1/4)^3x | | 7x+2.5=-4.5 | | 88-x/10=-11 | | 9x-16=-7 | | 4z+6z+10z=540 | | 20x=136 | | 12=3.25(x) | | (x+22)+(x+22)+180+2x=720 | | |3k-9|=24 | | 5x+2x-15=15+4x-9 | | 7y+40=5y | | 8x6=8(5+) | | 11=x-7-4x | | 1/3d-8=-2 | | A=3m-7 | | a*1.2420=3107.50 | | 2x+42+x+x-10=180 | | w/3-1=11 | | 18x-25-11+49=3 | | 15=0.75n+9 | | a*1.2420=648.50 |